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ABSTRACT 

A continuing investigation at Davidson Laboratory“ Is concerned with 

Improvement of the mathematical model developed for the evaluation of the 

steady and time-dependent loading distributions on the blades of marine 

propellers operating in spatially non-uniform flow. In the present study 
ii... 

¿¿»the surface integral equation resulting from the theory has-been solved 

by means of the collocation method, in conjunction with the generalized 

lift operator, for a prescribed set of chordwise modes which reproduce 

the proper leading-edge singularity and fulfill the Kutta condition at 

the traiIing edge. 
' c V» 

General programs have been developed to accommodate any geometry of 

propeller operating in a specified non-uniform inflow condition for a large 

but finite number of chordwise modes. The calculations Indicate that the 

spanwise loading distribution and the steady and time-dependent thrust 

reach stable values after three to five chordwise modes, but the chordwise 

distribution does not converge to its final form, particularly in the 

neighborhood of the leading and trailing edges. 

A comparison of theoretical and experimental results for the vibratory 

thrust shows satisfactory agreement on the whole. )lt is believed that the 

principal cause of any existing discrepancies between measured and calcula¬ 

ted results is lack of precise knowledge of the wake harmonics. 

KEYWORDS 

Hydrodynamics 

Unsteady Theory for 
Marine Propellers 
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INTRODUCTION 

In the past few years, Davidson Laboratory has undertaken a series of 

investigat ions^ concerned with the unsteady propeller lifting- 

surface theory. The primary purpose is the evaluation of the loading dis¬ 

tribution on propeller blades and of the vibratory thrust and torque 

generated by the propeller when it operates in a non-uniform inflow con¬ 

dition. 

This problem has lately attracted considerable attention, since it 

is intimately related to the problems of ship vibration, underwater noise 

generation and transmission, cavitation inception, and dynamic stability 

and control of water-borne vehicles. The need of an accurate and detailed 

description of the loading distribution of the lifting surface (i.e. pro¬ 

peller blade) is especially important with todays tendency toward high¬ 

speed vehicles. 

Investigations both theoretical and experimental have been conducted 

in other laboratories in the United States and abroad. Among the analytical 

approaches are the studies of Sparenberg,^ Hanaoka,^ Yamazaki,® Brown,^ and 

Greenberg.^ Sparenberg derived the three-dimensional integrai equation 

for the screw propeller in steady flow, and Hanaoka the corresponding 

equation for the case of unsteady flow. The other investigators cited 

were concerned with the solution of the integral equations under a variety 

of assumptions, some valid in the range of practical interest, others valid 

for values of parameters at the limits of practical interest. Yamazaki 

derived the linearized lifting-surface integral equation on the basis of 

vortex theory and solved it on the assumption of flat-plate chordwise 

loading, making use of the lift operator. Brown and Greenberg each 

developed the lifting-surface integral equation through vortex theory; 

but Brown used Reissner's high-aspect-ratio wing theory in attempting to 

solve the equation, while Greenberg assumed that the induced downwash is 

that due to a flat wing of finite aspect ratio, with a "helicoidal devia¬ 

tion" which was accounted for approximately. 

1 
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The problem of determining the loading distribution on propeller 

blades of known geometry operating under known flow conditions leads to 

a surface integral equation difficult to solve even by numerical methods. 

Due to the mathematical complexity of the problem, the investigations at 

Davidson Laboratory have followed in order an ascending degree of difficulty. 

A series of concessions has been made regarding the propeller geometry 

and the shape of the chordwise loading distributions, for the sake of 

simplicity; and certain other mathematical simplifications have been in¬ 

troduced. In References 1, 2, and 3 the solution of the surface integral 

equation was obtained for two loading conditions: (a) loading concentrated 

at the 1/4-chord line (Weissinger model), and (b) flat-plate chordwise 

loading (first term of the Birnbaum distribution). In both cases the solu¬ 

tion was for a sector-form blade with low pitch and the helicoidal wake 

approximated in a staircase fashion. In Reference 4, the theory was 

further developed to accommodate skewness and arbitrary blade form. 

Recently, an investigation^ was completed for a sector-form blade of 

arbitrary pitch, with flat-plate chordwise loading distribution, where the 

helicoidal wake of the blade is treated accurately, to supersede the 

earlier approximation. This investigation has shown the complexity in¬ 

volved in the rigorous treatment of even this simple blade form. The 

values obtained for vibratory thrust and torque are in satisfactory agree¬ 

ment with those obtained with the staircase approximation of the helicoidal 

wake. The vibratory thrust obtained by the exact treatment of the wake is 

shown to be about 15-percent larger than that obtained by the approximate 

treatment, and the mean thrust about 2-percent higher. It is believed that 

a further improvement of the numerical procedure in the exact treatment 

will reduce the discrepancy. Hence, the mathematical model with staircase 

approximation of the helicoidal wake is an acceptable model. Through its 

use, all complications arising from the exact treatment can be avoided, 

particularly when arbitrary blade form and sweep angle are incorporated 

into the problem. 

The present investigation is concerned with the improvement of this 

mathematical model with respect to its chordwise modes. A large number 

of modes given by the Birnbaum distribution is assumed, and then the 

2 
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Íntegra! equation is solved for the unknown spanwise distribution by the 

collocation method. In this way the proper loading distribution and the 

vibratory thrust and torque generated by a propeller operating in a three- 

dimensional non-uniform flow are determined. 

The study was sponsored by the Naval Ship Systems Command, General 

Hydromechanics Research Program S-ROO9-OI-OI, Contract Nonr 263(55)» admin 

îstered by the David Taylor Model Basin. 
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THE LINEARIZED UNSTEADY LIFTING-SURFACE 
THEORY FOR MÄRINE PROPELLERS 

The linearized formulation for a propeller with its N-blades lying on 

a helicoidal surface and operating in the non-uniform flow of an incom¬ 

pressible, ideal fluid was'derlved by means of the acceleration-potential 

method in the earlier papers.’"5 A brief recapitulation Is presented as 

background for subsequent discussion. 

The blades rotate at constant angular velocity in flow of velocity 

U + q , where U is uniform velocity in the x-direction and q is the 

perturbation velocity. The linearized equation of motion and the equation 

of continuity for the perturbed field are 

0) 

(2) V . q = 0 

where = fluid density , p = perturbation pressure , t = time. 

The quantity 

(3) 

is known as the acceleration potential. With the velocity potential 4> 

from 

q s 74» (4) 

the first two equations yield 

4 



The solution of Equation (5) satisfying the condition ¢=0 at x = - 

is given by 

^x,r,tp;t) 'i'K'r.'Pit 
X-T ■) dr ' (7) 

where x.r.V represent a cylindrical coordinate system fixed in the pro¬ 

peller (Fig. I). It has been shown1,3 that the pressufe field generated 

by a lifting surface S is given by distributed doublets with axis parallel 

to the local normal, and with strength equal to the pressure Jump across 

the surface S . Thus the pressure at a point (x.r.tp) at time t will be 

given by 

ï(x,r,cp;t) Ap(S,p,9;t) 
1 

R'(x,r,tp:EiP»e) 
dS (8) 

where 

n = 

ApíÇ.p.e.t) = 

s 

normal derivative on the surface S at the loading 
point (5,p,6) 

unit normal vector having positive axial component 

pressure Jump across the lifting surface, 
I. e. A p = p+ - p_ 

y(x-5)a+ ra+ p3- 2rp cos (0-cp) RW,cp;?,p»0) 

Descartes distance between the given control point 
and loading point 
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For doublets with pulsating strength ¿p(§,p,0) e^ at point (5^,0), 

which rotates with angular velocity -n , Equation (8) yields 

¥(x,r,cp;t) - ^ JJ M§.P,0O) R'(x,r ,'v,i,p ,Q0-K) dS 

(9) 

where u) = frequency 

0Q * Initial angular position 

The corresponding expression for the velocity potential at (x^r,^) is 

obtained by substituting Equation (9) In Equation (7). 

When the lifting surface is identified as the helicoidal surface of 

an N-bladed propel 1er, where both control and loading points rotate with 

angular velocity -fi , the expression for the velocity potential is given 

by 

*(x,r,<p0;t) 

N 
¡q[a(T'-x)-0n] 

(10) 

where a 

q 

0 
n 

R 

Vo 

n/u 

«J/n Is order of blade harmonic 

Y (n-D , n «= 1, 2...N 

+ ra+ pa- 2rp cos [0O- cp0 + - a(T'-x)] 

initial angular position of control point 

The self-induced velocity at (x,r,cp0;t) will be given by 

6 
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N 

W(x,r,cpoit) = - fïïTÛ ff MS.P.9q) 
n=l f S 

ô fx 'qfa(T'^)-9nJ a /K , 
* IrJ ãí W dT ds 

di) 

where r—7 is the normal derivative on the helicoidal surface at (xjr,^) , 
cn 

the control point. 

The directional derivatives normal to the helicoidal surface, which is 

given by x = 90/a or Ç = 60/a , are: 

At the control point, 

ôn 

r /ó JL JL\ 
' ” Vh¡V V ^ ’ r3 \) 

(12) 

At the loading (doublet) point, 

òn >/l+á 
i ± 

2J3 ° P3 V 
(13) 

If the self-induced velocity is equated with the known (measured) 

velocity distribution (downwash velocity) normal to the propeller blades, 

Equation (11) becomes 

V(r) eiq(fit^o) = 

ep 
iqQt rb * 

-M ûp(p»e0) K(r,<P0;p,eo;q) P dp deo 

f 

4îip 
(14) 

*8 

7 
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where G^p îs the projected semichord length of the propeller blade at 

the loading point, In radians, and the singular kernel K Is 

MriVoiP.eoiq) 1 im 
6-»o 

n=l 

(15) 

Here the factor \ l+asps/ap is the result of changing the integration 

over the actual propeller blade to integration over the projection 

in the propeller plane and ô = (cp0-öo)/a - (x-S) - 0 means that 

* Vo/a and 5“* 00/a . The limiting process is introduced to avoid 

the mathematical difficulty due to the presence of a high-order singular¬ 

ity. The mathematical manipulations are performed at control points on a 

surface slightly shifted from the lifting surface, and finally the former 

surface is bought into coincidence with the latter. 

If use is made of the transformation G0 = - cos , Equation (14) 

becomes 

Vid e'O^o) = 5^5 |1 J S(p,e0) K(r,<p0;p,e0;q) sin 0adeadp 

where S(p,0o) = [Ap(p,0o) • p9^] Is the unknown blade-loading function 

which depends on radial position p and angular position 0O . 

The kernel function appears to be one of the most complicated kernel 

functions in boundary-value problems of lifting surfaces. It has, In 

addition to the complications arising from the helicoidal surface and 

from the Interference of the other blades, the additional drawback of a 

hlgh-order singularity with finite Hadamard part. There Is little hope 

of a direct solution of the Integral equation, and a numerical solution 

suitable to high-speed digital computers Is therefore advisable. The 

analysis must be pursued to the point at which laborious computations can 

8 
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: ' 
* 

^ ;. 

be efficiently performed by numerical schemes, and the correct finite part 

of the high-order singularity obtained. The numerical solution of this 

integral equation, very difficult and challenging, Is obtained along the 

lines suggested by Watkins, et a 1 

The unknown loading function S(p,6o) is approximated in the chord- 

wise direction by a set of functions which reproduce the proper leading- 

edge singularity and fulfill the Kutta condition along the trailing edge. 

Such a loading distribution is given by the Birnbaum distribution, and 

then the unknown loading function reads as 

s(P,e0) = TT L(l,(p) co4+£\<"><p) 
sin (n-l)9 O’ 

ñ-1 
n = 2 

(17) 

where L^(p) are the spanwise loading components. It is judged safer 

not to specify the spanwise loading distribution, as is usually done, 

since conditions at the location of the hub remain unknown; the unknown 

spanwise distribution is left to be determined by the integral equation. 

After the chordwise integration is performed, the surface integral 
« 

equation is reduced to a line integral equation, viz., to 

Ür) ¡q(nt-90) - eiqnt5 
U 4npf U2 

^ L(l)(p) R^V.p.VcJqJdp 

^ ^ ^ L^(p) K^n^(r,p,cp0;q) dp 

(18) 
where the cross on the integral sign signifies the singular behavior of 

the integrand when p r as 6 “♦ 0 . The new kernels of the line in¬ 

tegral equation, K^, are the results after the ^-integrations. 

At this stage the notion of the lift operator was considered, as an 

9 
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extension of Its application In the field of two-dimensional steady and 

unsteady aerodynamic theory. It had been thought that its use In the 

three-dimensional flow condition was the best expedient in the present 

state of the art, and that, as stated in Reference 12, the chordwlse 

boundary condition would then be approximated by a weighted average. It 
* 

was realized recently that the function labeled lift operator is dictated 

by the integral equation itself and that its success rests in the main on 

the special structure of the kernel. Actually, the separable form of the 

kernel function (or, in the language of the theory of integral equations, 

the ''degenerate11 form of the kernel) dictates the structure and applica¬ 

tion of the lift operator. Indeed, a method of solving integral equations 

is In hand when the kernel function is of the degenerate form. 

Therefore, there is no approximation involved in applying the general¬ 
ized 1 ift operator 

i Í cos ^ I f * m = 0,1,... (19a) 
J o 

or that selected in the present case» 

m = 1 , 

m = 2 , 

m > 2 , 

1 fn 
I (1 - cos cpa) { ( (¾ (the Glauert lift 

•^0 operator) 

ïï f O + 2 cos cpff) I } 

J o 

, cos (m-l) cp 

r J -^TT- I I ^ J n (m-l) 
09b) 

Re-examination of the function was sp n red by a discussion with Dr, Rien, 
Dr. Morgan, and Mr, Chen of DTMB, who pointed out that effects of angle of 
attack and high-order camber oscillations can be obtained by means of the 
lift operator. 
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where 

0 r = projected semîchord length of the propeller 
b blade at the control point, in radians 

It is an indispensable part of the solution and is recommended for use for 

all lifting-surface integral equations, once the kernel is expressed in 

the corresponding separable form. 

It will be seen in the next section that, by means of a series expan¬ 

sion of the inverse Descartes distance 1/R, the kernel function can be 

expressed in such manner that the <P0 and 0Q dependences occur as ex¬ 

ponential factors separate from each other and from the other spatial 

coordinates. With 

the intégrât ion indicated in Equations (16) and (17) is easily performed. 

Then, with 

Vo = - 9br cos % 

the form of Equation (18) becomes 

CO 

where the or 90 dependence on the right-hand side appears in 

f (q,cp ) in exponential form. The exponential form 
m O' m 

e 
±îx cos 9a 
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which is present on both sides of the equation,can be expanded in terms of 

the orthogonal and complete set 

1 , cos cPç, , cos 2cp, O' 
cos m cp Of 0 ^ cp O' 

¿ TT 

in the form 

±ix cos cpa 
e Jo(x) + 2 JaX(x) cos 2\cpa + 21 

\«1 

JaA-i^x^ C0S 

The orthogonality property dictates operation on both sides of the integral 

equation by the operators given in (19a)» which are derived from the complete 

set mentioned above; or by the operators given in (19b), which are derived 

from the complete orthogonal set 

1 - cos CpQ, 
cos (m-OcpQ, 

1 + 2 cos cp^ , cos 2 cp^ , ... -.0 £ CpQ, ¿ TJ 

The latter set was chosen in order to utilize (as first mode) the "lift 

operator" defined in steady and unsteady airfoil theory. The set is or¬ 

thogonal without the second term, but incomplete. Inclusion of the second 

term 

1 + 2 cos cp^ 

assures that the formal expansion of any function (like e ix cos ^Q') in 

terms of the set is a valid representation of the function and not an 

approximation. 

12 
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By applying the lift operators to both sides of Equation (18), a set 

of integral equations is obtained which can be expressed as 

tj 
S=2 

I15)!») R(i's)(r,p,,) dp 

(20) 

where 
I * . r17 iqe. r cos cp 

m = I , I (q0br) = TT J (1 - COS cp^) e dcp^ 
J o 

(a) r , fn i^b1" cos cp^ 
•n = 2 , I (q0br) =^1 (1+2 cos cpa) e D *Pa 

J 0 

(-\ _ . fTT cos (m-l) cp iq0, cos cp 
a > 2 , I(m) (qe r) . if -—b 

^ o (m-l; 

and are the kernels after both and cp^ Integrations. The 

number ft of integral equations is equal to the number ñ of unknown 

chordwise modes. 

The solution of ft = ñ integral equations is obtained by the collo¬ 

cation method. Subdividing the blade into i-strips along the span, of 

length 2(3, reduces the ft integral equations to a set of algebraic equa¬ 

tions: 

V(r.) 

4nPf U‘ 

■I I max J 

Ë E l(sS> kij<”’")(ri’PJ) 
ñ=1 j=l 

(21) 

13 
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where 

and 

¿¡=1,2, j = 1, 2,... J (number of strips) 

i = 1, 

. (m,ñ) 

k¡.J (rI'Pj) 
f j K{S’ñ)(r1>P) dp 
J Pj-ß 

(ñ) 
In this way the unknown spanwise loading components L (pj) are 

determined, and the resultant spanwise loading distribution then follows 

from Equation (17)• 

Jj fn ( ) 
L(r) = j S(p,90) sin 9,, d9ff = ^ J L(1,(p.) (1 + cos 9^ d9a 

co -n 

iS f l(SV 
n = 2 •'n 

sin(n-l)9 

(ñ-0~sin eode« 

- L(l)(p.) + j L(3)(Pj) 

(22) 

In accordance with the linearized theory which assumes the loading is 

distributed on a helicoidal surface with pitch angle equal to the hydro- 

dynamic angle \ = tan_1(l/ar), the formula for total thrust at each blade 

frequency q should be 

(23) 

However, since the effects of angle of attack (the difference between 

geometric and hydrodynamic pitch) and camber are also taken into account, 

14 
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as will be shown later, it can be argued that the loading is distributed 

on the actual blades which lie on a helicoidal surface of given (geometric) 

pitch'angle ep(r) • 

On this basis the expression for total thrust will be given by 

T(q) L(r) COS ep(r) ..] (24) 

In order to simplify the mathematics, utilization has been made of the 

approximation of the helicoidal wake of the blades which deforms the heli¬ 

coid Into a staircase function, since the result of this approximation 

is In satisfactory agreement with that of the exact treatment.^ Further¬ 

more, the complications arising from the exact treatment bar the possib¬ 

ility of accommodating important variations like blade shape and skewness. 

Blade shape variation is taken into account through the parameters 

9 p and e, r , which are the projected semichord lengths in angular 

measure at each radial position of loading point (p) and control point (r). 

Skewness is defined as the angular position a of the midchord line of the 

projected blade at each radial position from the vertical through the hub, 

so that now 

‘f’o = al- V C0S 'Pff 

eo = op- ebp cos ea 
(25) 

15 
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"1 w fliJIlfIW WíW !r Iitl 'l «I • 

THE KERNEL FUNCTION 

If t' = T + 5 is substituted in Equation (15)i the kerne! becomes 

K(r,(po,p,eo;q) 
>ÍÍT¡V 

ap E 1 im 
Ô-^o 

eiq[a(T-x+g)-0n]dT 

^T2 + r2+pa-2rp cos [0 (T-x+Ç)] 
—co u 

(26) 

The Integral has been evaluated by means of the expansion of the Inverse 

Descartes distance in Reference 5, which treats the helicoidal wake exactly. 

If the expansion scheme 

I (kp) K (kr) eiT^ dk 
nr m 

for p < r 

I (kr) K (kp) e'Tk dk 
m' 7 m' 

for p > r 

(27) 

is utilized, where Ij ) , Kj ) are edified Bessel functions of order 

m , then, as shown in the reference cited, the kernel is (for p < r) 

^T8 + ra+pa-2rp cos ß 

s E 
m=-<x> J - 

4 Ê Í 

16 
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K(r,cp0,p,ô0;q) “ “ 
N r 
n . r~ as 

aV 1 + a r 

m=-cD 
m=q+\N 

Tîe ° ° Jaa(m-q) ^a3(m-q) lm(a|m-q|p) Km(a|m-q|r) 

• 3 ^ i a e i -¡<-eo)| ^^(kp) Km(kr) e 
¡“ ^o^o) 

k-a (m-q) 
dk 

-¡m(cp0-eo) f kl (kp) K (kr) e 1 I % ',m'• o o ' i m ' ' ' m 
iam(--3 + -a-) e 

r o 

ii<V6o) 

dk 
k-a (m-q) 

ma -¡m(cpo-0o) f 
“î -2“T e 

r P L 

IJkp) Kn(kr) e 
¡ï (Ve«) 

dk 
k-a (m-q) 

(23) 

For p > r , p and r are interchanged in the modified Bessel functions. 

In Reference 1, Shioiri and Tsakonas simplified the computations by 

substituting a staircase function for the true helicoidal path. The 

various steps of their method are given below. 

Let y = - a(T-x+Ç) in Equation (26). Then the interchanging of the 

integral sign and the differential operation becomes possible: 

17 
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K 1 Vl+aV 
a ap 

N 

n=1 

1 im 
ô~*o 

-¡q(ên+y) 

e 

dy 

òny òn r3 +ps- 2rp cos (^-^0+^n + v)} 
1/3 

Now, if X = ^ - (x-§) 
a 

and 
0 = 0n + e0 - cp0 + y 

the kernel can be expressed as 

(29) 

where the derivatives with respect to X and 0 are performed as if X 

and © were not related functions, and then the substitution 

X 
0 - 'en + - 9o 

a 
(x-S) (29a) 

18 
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is made. This device will give the same results as before (Equation [28]), 

if the expansion 

lm(kp) Kjkr) e',Xk dk 

(for p < r) 

(29b) 

is used (see Appendix A). 

In References 1-4, the assumption was made that the propeller pitch is 

low, i.e., a = fi/U is large since a can be considered as inverse advance 

ratio or as being inversely proportional to the pitch. Then 

(30) 

In other words, the directional derivatives are in the axial direction 

normal to the staircase path, which makes the mathematical model consistent. 

Although it appears that approximation (30) is valid only for the 

low-pitch case, a closer study of the line integral in Equation (29), be¬ 

fore and after the deformation into staircase form which is described in 

a subsequent section on "The Assumed Staircase Function Replacing the Exact 

Integral Path," indicates that a change in the path of integration should 

be accompanied by a change in the directional derivatives. The results of 

the line integration are identical for both consistent models, the one 

with helical path and directional derivatives normal to that path (Equations 

[12] and [13]) and the other with path of integration along the projections 

19 
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of the helical (staircase) and directional derivatives normal to the new 

path (Equation (30]). Indeed, it has been shown in Reference 5, where the 

exact helical path is treated, that the use of assumption (30) with that 

model leads to results far different from the results obtained when either 

of the consistent models is used,and that the consistent models yielded 

values of thrust which were in good agreement. For comparison with the 

results of Reference 5, the present report will also consider the case where 

the wake is approximated by the staircase function but the derivatives are 

taken normal to the helicoid.. 

It should be noted that the basic assumption in the staircase path 

approximation comes when the decoupling of X and © is introduced, as 

will be seen in the section on page 23. 

DETERMINING THE DIRECTIONAL DERIVATIVES 

Here, as in References 3 and 4, the Descartes distance 

R = ^ x3+ra+p3-2rp cos ® will be expressed in terms of Legendre functions 

of the second kind: 

m=o 

CO 

e cos m® 
m 

^Xa+ra+p3^ 

where e m 
1 , m = 0 

2 , m ¿ 0 (31) 

11 can also be expressed in terms of Bessel functions of the first kind: 

20 
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Taking the derivatives of ^ with respect to X and 0 results in 

i 

■ï 

té 

o) ^ = ^ 

-rr 7 e cos m© ft' ] (z) 
Na/3 / ^ m m-¿N ' m=o 

where z = Xa+ra+oa 
2rp 

QmU(z) = 4Qm-i(z) 

(2) -4 (i) = 
0XS V “ Tr(rp)^ S 

e cos 
m 

m=o 

m0 i(z) + 7T 
I rïl™ 2 2 I 

where ^1^(2) = “ Q„ i(z) 
ITI" 2 Ô23 m-2 

(3) ÿ é - 
30' 

a2 

a R‘ Ee m3 cos m0 Q i (z) 
m 01--5- ' 

W Ô0ÕX " 
n(rp) 

fa 
w Eg m s in m0 Q.7 , (z) 

m m-2 

m=o (32) 

These values are substituted in Equation (2g) so that taking the 

derivatives normal to the helicoidal, as shown in that equation, yields 
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Mr.q^.p.So ;q) = 
1+a3 ra ^ 

îq^o-^) 

a^r3+pl^ m sin m@ XQ' ^z) 
(rp)/3 m-2 

N 

•EE 
n=i m=o 

e 1 lm 
m = 

-iq0 

e -(cp -en) n 'rO o • 

yjrp 
cos m© Q' ,(2) + — Q 

m-i rp m '',(z)l n-2 J 

m cos m0 Q x(z) 

(rpf/3 

d0 

0-0 
X = -- + 6 

(33a) 

If the directional derivatives normal to the staircase path are used 

(Equation Í30]), 

I -iq^Q-öo) 
K(r,cpo,p,ö0;q) = - — e / , / . g 1îm m 

n=1 m=o 
0~*o 

( ^(rp)373) L e -(cp -e„) 
n VYo o' 

e”^® cos m0 Tq' « (z) + ~ (z)l 
m-2 rP m-2 I 

d0 

0-0 
X = -Q + 6 

a 

(33b) 
22 
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THE ASSUMED STAIRCASE FUNCTION REPLACING 
THE EXACT INTEGRAL PATH 

The functional relationship between X and © (see Equation (29a]) 

is approximated by a staircase function, 

where 0Q = 2tt/N . Then Equation (29) can be reduced to the following form 

(with r, p, X and a non-dimensiona1ized with respect to propeller radius 

K (Ki+ Ka) (34) 
3 ar o 

where 

d0 

X ■ 6 
p ■ o 

(35) 

K * 1 lm 
6-*o 

(36) 
fir 

and now r, p, and X are fractions of ro and a = -jj- . 

23 
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EVALUATION OF Ks 

On substituting Equation (32) In Equation (36) It Is seen that there 

are no singularities, and therefore the limit 6 -♦ 0 may be taken before 

integration. The ©-Integration involves 

e cos m © 
m 

0 , m / q 

2TT , m = q 

and 

e sIn m© e d© 
m 

0 , m 3* q and m = q = 0 

-i2n , m = q 0 

When m q , K2 = 0 ; and when m = q , 

K= 'Ê [ + fe 

+ 
Qq-4(Z) 

ia( ra+p3) 

(rp)% 
(37a) 

where X = p 90/a . 

If the directional derivatives (Equation 30) normal to the staircase 

path are used, 

24 
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LU 

= £ 
p=l 

le 

iq^o-öo) 

(rp)^2 

(37b) 

In Appendix B it is shown that Equation (37a) can be approximated by 

«a 
2e 

iq^o-öo) 

•^1+a 
S-? „ 

r ap 
^ [5.94 Hq.x(2l) - 19.53 dq.i(Z3) + 13.59 %.i(z3)] 

iaa(ra+pa)g 

e0(rp) 
^3 K-^2^ + Qq-i(ZB) ■ Qq-5(Z6>] 

(rp) 
[%-l(Z7) + Qq.^za) + %.i(z9) + 6‘7 <iq.i(zio)] 

(38a) 

and Equation (37b) by 

Ks « 

-iq(VGo) 
2e 

fr [s-s1* ¢,4(¾) - '9.53 ¢,^(¾) t 13.59 ¢,..(¾)] 

(38b) 

where 2. is given in Appendix B, Equation (B-ll). 

Since the kernel is in the separable form, the p-integration and the 

cp^- and 0^-integrations are independent. Calculations have shown that in 

the case of Ks the p-intégrât ion can be performed by the tangential rule, 

/•pj+ß 
K3(r.,p) dp = 2ß K3(r. ,Pj) 

JPj-e 

25 



R-1133 

or 

(r.,p) dp 2ß Ks(m,n)(r| (39) 

where the kernels are evaluated at median p of the j-strip of length 23 . 

A value of 3 = 0.05 (in terms of rQ) is satisfactory. 

EVALUATION OF Kx FOR p ^ r 

Since there is no singularity in Kx when p r, the limit value 

X = ô =r o can be substituted before integration. From Equations (35) and 

(32), 

iq (veo) 

]+aa ra ap 

N 

Si iq© 

n=1 0,-(^0-60) 

Ee )- aarp cos m© ) (z) m I 

m 0 + m3 cos m® Q, x(z) [ d® 
m- 2 

where now z = (r3+ p3)/2rp . 

Let 

-iq(^0-00) /-®n+®o/2 
f(m,q,n) = e •iq© ^ e cos m® d® 

e -(cp .ert) 
n 'ro o' 

(40) 

(41) 
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Then, for p r , with derivatives normai to the helicoid, 

—AN n=l 

- a 

^=0,1,... 

'arp Ci(z)] 

(42a) 

and with derivatives normal to the staircase path, 

TT(rp) 

CO I'» 

W S em Z) f(m-q’n) Ci(z) 
(42b) 

m=0,N n=l 

Appendix C gives the proof that m is an integer multiple of N 

and evaluates f(m,q,n) . 

For m ¿ q , 

f(m,q,n) = i 

n=l 

- i (m+q)0o/2 e+i (m-q)ö0/2 

m+q m-q 

e-im(cpo-0o) e ) 

m-q m+q 
(43) 

for m = q 7* 0 f 

e-iq(tp0-Ö0) 
+ CP0- 

27 
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and for m = q = 0 , 

^ f(m,q,n) 

n=l 

where cp0 or - 0br cos q>œ 

= o - V cos 0a 

The integration 

pj+B 

i Kj (r.,p) dp 

Jpj-ß 

K1^)(rl,p) dp 

is done by Gaussian quadrature for the strips Pj = rj ± 2ß ; î.e., for 

the elements of the kernel matrix next to the main diagonal and thus closest 

to the singularity. For all other off-diagonal elements, 

><! (rj.pj) 

K,<i’5)(r|,pJ) 
W 

where the kernel is evaluated at median 

the half-strip is satisfactory. 

A value of ß = 0.05 for 

(r'*° 
EVALUATION OF 1 K^r^p) dp 

Jrj-ß 1 

After the substitution of Equation (32) in (35), it is seen that, 

when p approaches r. as X approaches 0 , z = (Xa+ rs+ pa)/2rp 

approaches unity and Qm-j.(z) becomes infinite. The integral 
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ri+p I Kj (r. ,p) dp 
Jr.-ß 

has a high-order singularity with Hadamard finite contribution. 

Let 

g(m,q,n) 
-¡q^o-So) 

e (45) 

and f(m,q,n) be defined by Equation (4l). The Kx kernel for p close 

to r , with derivatives normal to the helicoid, is expressed as 

n(rp)"^y[]+ä 3 rs ap 
1 im 
X-o m 

m=o,N 

.■ 

H 

Ï 

IN 

E aarpQ' i (z) - a3XaQ"1(z) + maQ , (z)l 
• L nn-2 J 

N 

- E 
n=l 

x Vi(z) (46a) 

with z = (Xa + r3 + pa)/2rp. 

With derivatives normal to the staircase path, 
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Ki 
n(rp)5/a X-o 

00 H 

¡im em Ef(m>q*n) [" rpQm4(z) ■ x3Qm-è(z)] (46b) 
m=o,N n=1 

The Integration over p becomes, from (46a), 

f,'i*p i 

Jr,-B X-°.: 

CO 

im V' 
MmmJ m 

ni-o,N 

fím.q.n) Í 
n=l 4 

ri+ß [- a3rpQ' ,{z) - aaX3Q' i(z) + m3<l Jz)] 
L m-9~ m-? m*g j 

and from (46b), 

(rp) ap 
dp 

m 
N c \ 

g(m,q,n) 

n=l Jr,- 

rl+ß (ra +p3) X ^Az) 

dp (rp)' p 

(47a) 

fr,+e i A (r'^ T- rpQ' i(z) - xV',(z)l 
Xj (fj ,p) dp - Em 2 f(,n,q’n) ^^ ’ "■ .Va ^ dP 

" r.-ß m«o,N n«l •'r.-ß (rp^ 
1 1 (47b) 

As X 0 and p -* r , z -» 1 . The Legendre functions can be expanded 

in series valid near z = 1 , provided ß is chosen small enough. 

In Reference 14 a series representation of Q i(z) valid near z = 1 
m~ 2 

is obtained by assuming a solution to the appropriate Legendre differential 

equation 

(1 - za) a'',(z) - 2z a' i(z) + (m8 - 1/4) 0 ,(Z) = o 
m-2 m- 2 m-2 

(48) 
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of the form 

m* i(z> = 2 ams(Z-,)S + ,n (Z-1) 2bms(z"l)S {49) 
2 S=0 5=0 

Then 

■ Ë S-l 

and 

a s(z-!) __ 
ms N 7 ms 

S=0 5=0 

03 

+ + MZ-I)X\SS(Z-I)5-1 
5=0 5=0 

(50) 

CD vxj 

■ E»ms=(-')(-'r%Ebms(S-i)(z-i) 

¿ S=0 5=0 

S-S 

+ bmqs(z-l)S“3 + In(z-I) bm5s(s-l)(z-l)S"° 

(51) 

5=0 5=0 

where 

(,.,) = x!_Llr^ 

2rp 

14 
and the coefficients are given by Siuyter as: 

a 
mo 

6 
mo 

m 

! ! - 2X} 2]7T <'-SJ 
j=l 

1 for m = 0 

0 for m ^ 0 

- 1/2 

[Cont‘d] 
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b , = b iLr.?"P(FH-0 

m'P+1 "P 2(p4-I)3 

i = a ^-¿-pip+l) 

m,P+' mp 2(p+|)a 

b 2(m -j:)+p-fl 

"’P 2(fH-l)3 
(52) 

By using these serles représentât ions i t is shown in Appendix D that 

,, ,r,+e (ra+P3) X <^_i(z) dp 
a - lim 1 ----^2- 

X-*0 
■ß (rp)B/a 

Since ß is small, in the region r.-ß < p < r[ + ß ¡t w¡n be 

assumed that the mean value of p(= r() can be substituted in the denomln. 

ators of the rv^ning integrals of Equations (47a) and (47b). It Is 

necessary then to evaluate the following Integrals; 

It = lim 

r+ß 

. f 
0 -ir-S 

Q ,(z) dp 
m-2 

I Im 
X 

r+ß 

•^r-ß 

These Integrals are evaluated in Appendix 0. Equation (47a) becomes 

,r,+ß 

r* p J m=o,N n= I 

(53a) 
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and Equation (47b) becomes, for the case of derivatives in the axial direc 

t ion, 

Mrj.p) dp 

CO 

f(in,q,n) lj 

n= 1 

(53b) 

where ^ and l3 are given in Appendix D as 

I, « 2ß S ©1t)[ ■U... + b 1 
ms ms •(a- 2b ms (2s+l): 

(54) 

4r b mo + 2ß ms (2s-l)a 

(55) 

It is interesting to note that, since l3=0 and !,<< I2. there is 

very little difference between Equations (4?a) and (47b), or between 

Equations (53a) and (53b). This is reasonable since in the small region 

around the singular point there should be only small differences between 

the normals to helicoidal and staircase paths. 

For the p-integration of K2 , and K, when p ¿ r , a value ß = 0.05 

for the half-strip is satisfactory. However, calculations have shown that 

the integration around the singularity p = r can be safely performed only 

for ß no larger than 0.01. 

The integration of in the regions adjacent to the singularity 

strip, r. - 0.05 * P * r. - 0.01 and r. + 0.01 * p * r. + 0.05 , is done 

by means of the Lagrange interpolation method described in Appendix E, 

where the values of M^.p) are taken from Equation (42a) or (42b). For 

the case with derivatives normal to the helicoidal path, 
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r-.Ol „r+,05 

í + •'r-.OS Jr+. 01 

Kj (r,p) dp 
nryS/ü¡V“ ^ m 

^ e y^f(m,g,n) 

m=o,N n=1 

r-*01 ,r+,05 

I *,r-.05 *'r+. 01 

m2<i j.(z) m 2 

ap 

arQ,U(z) 

and, when the derivatives are in the axial direction, 

dp 

(56a) 

r-.Ol -r+.05 

I *1 Jr-.05 Jr+. 01 
Kx (r,P) dp = - S em 

nr m —M 1 m =0, N n = 1 

r-.Ol ^+.05 

•i 
r-.05 r+.Ol 

Qm4<z) 
% 

dp 

(56b) 

where z = ra + p3/2rp . 

As shown in AppendSk E , 

r-.Ol r+.05 

1 J •'r-.OS •'r+.Ol 

Vi(z) 
.6/3 

dp 

0.3111...(F,-^)+ 0.7111...(F3-F.s) + 0.1777...(Fia-F.J 
3 “3 

+ 0.3555. • • (F4-F_4)+ 0.06222. ..(F -F.b) 

(57) 
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where 

F 
P 

0.01 
(r+O.Olp)^ 

z = ra + (r+0.01p)g 

P 2r(r+0.01p) 

p = ±1, ±2, ±3, ±4, ±5 

and 

f.r-.OI -r+. 05 

+ J 
r-.05 •'r+.Ol 

dp 

= 2283.2895 (Vf.,) + 2397.1028 (f3-f.s) - 169.02 (fg-f.g) 

+ 350.9914 (f4-f_4) + 5.1197 (fe-f.s) (58) 

where 

f 
P 

(O.Olp)3 

(r+0.01p)^a 

with z as before. 
P 
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THE CHORDWISE LOADING DISTRIBUTION AND 
GENERALIZED LIFT OPERATOR 

As was stated earlier, a direct solution is impossible because of the 

complexity of the surface integral equation. A large number of modes given 

by the Birnbaum distribution (Equation [171) is assumed for the chordwlse 

loading. The integration over 90 can then be performed after the trlgo- 

metrlc transformation 0O = ap - ebP cos . The surface integral equation 

Is thus reduced to a line Integral equation. 

Next, the generalized lift operator (Equation [19b]) of m modes is 

applied to both sides of the integral equation. There are now m Integral 

equations which are equal in number to the ñ chordwise modes. These 

equations are given by Equation (20). The unknown spanwise distribution is 

then found by the collocation method. After subdividing the blade into 

i-strips along the span, the m integral equations are reduced to the set 

of algebraic equations given by Equation (21). 

In this equation the modified kernels Rm,n are given by 

ijU.i) , 

RP’1> - 

R(m > 3,i) = 

n TT 

-J J j" ( 1 - cos <Pa) ( I + COS 0a) K d9a dtpo 

o o 

TT TT 

j" j" (1 + 2 cos (1 + cos 9^) K d9a c*Pa 
TT3 * o ^0 

n Jr i f" C cos(m-l)tp 

7 J J —Tãrrí" 0 + cos e«) K d0« ^ 
TT O O 

(I - cos 9J S'n/-'""l!— Sin K d9^ *p. 
TT O O 

H JT 

-t J" J ( 1 + 2 cos cpa) 

a (ñ-1) 

s ln(ñ-1)0» 

a a ’ey 

TT 0 0 

sin 0_. KdO^ d<f 
(ñ-1) a a * 

[Cont'd] 
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= _L 

TT TT 

U 
cos (m-1 )cPq, s ¡0(0-1)00- . n ,,JQ ^ 

—(îiô-(K^rsin e» “ « ^ 

for m > 2 , ñ > 1 

where the kernels K are as given in preceding sections. 

The following relations are needed for the 9^-intégrât ions : 

A<‘>(x) ■¡f r\ 

(1 + cos 9^) e 
-ix cos 9 O’ 

d9 O' J0(x) - ÎJ^x) 

(fi) 
. f11 sin(ñ-l) 9Q, sin 9^ 

(x) a 5 J. ÕTÕ 
-ix cos 9 O' 

de 
O’ 

Lll 

O 

n-2 

2(ñ-1 ) 
[Jñ-Z(x) + Jñ(x)] > 

> 1 

\{l)M il 
n 

- iX cos 9 
(1 + cos 0^) cos 0^ e d0CT 

[Jo(x) - J8(x)] - i Jt (x) 

il 
sin (ñ-1) 0^ sin cos 0^ -ix cos 0^ 
- e d9 

(ñ-l) 
O' 

/ }\n+1 

ferry [Jñ-3(x) ■ jr+i(x)] -ñ>l 

(59) 

(60) 
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The values for (-x) are the complex conjugates of the above expressions 

for (+x)• 

For the m modes of the lift operator: 

l(l)(x) 

I{a ] (x) 

l(fh)(x) 

.^(X) 

if/. +¡x cos <Pa 

ïï J j 0 
(1 - cos Va) e Wo, = J (x) - ¡Jjíx) 

•Hx cos <p ..n 

j (1 + 2 cos cpa) e “ ^ = Jo^x) + 2iJi(x) 

. r77 cos (m-1)9^ +ix cos tpa lm~ 'J- .(x) 
e M = -- , m > 2 

(m-0 
n Í 

J o 

o (m-1 ) 

TT 

(1 - cos cp^) cos tpQ, e 
+ÎX COS 9 O' 

dcp O’ 

2 [Jo(x) " J3W1 + 

+ ix cos cp 
(1 + 2 cos <pa) cos <Pa e dcp^ ■ä( 

= fJ0(x) - Js(x)] + (x) 

l,®M 
n cos(m-l) cp^ ¡x cos 9( 

cos e 
(m-1) 

O' 
d9 or 

,(rn-2) r 1 
[- Jni(x) + Jm-2WJ > 2 (61) 

where again the values for (~x) are the complex conjugates of those for 

(+*). 

The left-hand side of Equation (20) or Equation (21) is, with the 
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introduction of skewness, 

V(r) 

U (62) 

When q = 0 , 

(1). r (a) _ 
1 (qeb ) = i (q0b ) = i 

l(S> . 0 

The evaluation of ,0j) Is perfor.ed lo the following e.»nnor: 

(1) From Equations (59) and (39), if the definitions of cpQ and Bq are 
used, 

k (ni,ñ) 
K2 (ri,Pj) 

- iq(ar-oi>) 
2ße 

•i(^(qebr) A(R)(qebP). F(riP, 

(63) 

where F(r,p) is the factor of e"iq(cp°“0o) in Equation (38a) or (38bj ^ 

(2) For Pj / fj , 

^’^(rpPj) - [J do 
« -ft 

p.+ ß .a 

E E j 
ni*o,N n«l ^ 

n‘dQm-4(z) " 9,9 
Va 
-m"7 

dp 

(64a) 
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with derivatives normal to the helicoid, and 

‘>(i's)<w Ë •« ¿í(i'5) 
m=o,N n=1 

,P:+P 
^- dp 

pj- 0 
(64b) 

with derivatives in axial direction, where 

z = 
r2 + p2 

2rp 

and the p-intégrât ion is done by Gaussian quadrature for next-to-main- 

diagonal elements and by tangential rule, which was used for calculation 

of k3 , for other off-diagonal elements. 

Here, for m ¿ q , from Equations (43) and (59). 

IÜ 
2 

n= 1 

riq(a -CD) A^)(q«bP) 

' -¡(m+q)00/2 l(m-q)3o/2 
e e_ 

m+q m-q 

+ ¿1ÜË.-12 I (51) (meur) A(n)(mtíhp) 
m-q 

,«(.<> 
mfq 

for m = q 0 , 

N 

E 
n= 1 

f ë - i q Qq"1 
-iq(or-ap) A<^(q6bp) [f + or-ap + g J 

2q 

+ [.ebr l^)(qebr) A(S)(q6bP) + ebP l(S>(qebr) Ap)(q6bP) 
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and for m = q = 0 , 

l^(o) A(ñ)(o) 

- 0br 1/^(0) A(fi)(o) + 9bP l(S)(o) \{'n\o) (65) 

(3) In the region r. - 0.01 < p < ^ + 0.01 , with derivatives normal to 

the helicoid as in Equation (53a), 

r.+.Ol 

J 
J r.-.01 

dp 
I 

TTar4 Vl+a3rs 

œ N 

e 
m 

m=o,N n= 1 

f^jm^-a3^] 

(66a) 

where li and l2 are given by Equations (5*0 and (55); with derivatives 

normal to the staircase path as in Equation (53b), 

r.+.01 

r 
r.-.OI 

R;S’ñ)(r.,p) dp 

w n 

r m=o,N n=1 

r(m,n) (66b) 

In Equations (66a) and (66b) it is assumed that for this small region 

ir = ap and = 0bP . 

(4) In the regions adjacent to the singular region, 

rr.0l rj+.OS 

+ *'r|-.05 r j+.Ol 

^n) dp 
m*o,N n*1 

(6?a) 

nar^a r 
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with derivatives normal to the helicoid; or 

nr 
55 È 

m=o,N n=1 
(67b) 

with derivatives in the axial direction, where l4 and lB are given by 

Equations (57) and (58). Here, also, It Is assumed that oT = op and 
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LOADING DUE TO BLADE CAMBER AND 
FLOW INCIDENCE ANGLE 

Equations (14) through (21) have been written for hull-induced veloci¬ 

ties obtained from wake surveys in the propeller plane as 

V(r) 

where V(r) are the Fourier coefficients of the wake velocity normal to 

the propeller blade. However, the various small disturbances imposed on 

this flow can be treated similarly. The velocities induced by the disturb¬ 

ances are simply added to the wake velocities. 

Since the propeller blades do not coincide with the assumed helicoidal 

surface of pitch 1/a, but are located on a nearby surface, additional flow 

disturbances arise due to incidence angle and blade camber. The velocities 

induced by these are independent of time because the blades are considered 

rigid, so that only the stationary part (q = o) of the loading will be 

affected. 

The loading Lc+^. , due to camber and flow-angle disturbances Vc 

and V^. , is obtained from the steady state part of the integral equation 

with the left-hand side replaced by (V + Vf)/U . c í 

The flow-angle disturbance depends only on the radial position, not 

on cpQ, , and therefore contri bûtes only when m = 1 and 2 . 

The velocity due to flow-angle effect is 

. (1),(2) 

Vf(r) 

U ' tan 
-1 1 

ar (68) 

where the incident flow angle is defined by the difference between the 

geometric pitch angle tan" (P/2TTr) and the hydrodynamic pitch angle 

tan" (1/ar) of the assumed surface. 
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The velocity due to camber effect is 

V = + u VÎÜV 
c os (69) 

where ôf(r,s)/ôs îs the slope of the camber Une f(r,s) given at dis¬ 

crete points measured from the face pitch line. This slope can be expressed 

in a Fourier series expansion in terms of s = b(l - cos (p^) where b is 

the semichord in feet. On application of the lift operators, Equation (69) 

becomes 

w (m) = 1 
C TT 

1 - COS CpQ, 

l + 2 cos 
cos (m-l) cPq, 

m-1 

c O' (70) 

Because df/ds is predominantly a cos cp -function, \7 will be negli- 
c 

gible for m > 2 , For rTi = 1 , 

<?ç1)(r) _ Vl+a3 ra 
U a 2b(r) 

1 
TT ös' 

(1 - cos 9œ) % (71) 

where s - s/2b(r) = (1- cos 9^)/2 . If Equation (71) is integrated by 

parts after changing the variable of integration from cpa to s', then 

-(D 
V 

c (r) 

U 

I f1 f(r,5 ') ds7 

Jo 

(72) 

The factor in the brace of Equation (72) is the theoretical no-lift 

angle of Glauert. Ordinates of the camberline f(r,s') are more accurately 

read than slopes; therefore Equation (72) is to be preferred to Equation 

(71). Integration is done by the trapezoidal rule from s/ = 0.05 to O.90 , 
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and the ends are integrated analytically after substitution of a simple 

function in s' for f(r,s') . For example, if the parabola s'O - s') 

•f(0.05)/0.0475 is taken for f(s') at the leading edge (s' = 0 to 0.05), 

and the line (1 - s') f(0.95)/0.05 for f(s') at the trailing edge 

(s = 0.90 to I.00), and it is noted that in this case f(0.90) = 2f(0.95), 

Integration will yield the Burrill'"’ factors for f(s') at s' = 0.05, O.9O 

and O.95. 

On application of the second lift operator, 

_ (2) 

\ (r) 

u 
V 1+a3 ra 

2b(r) (I + 2 cos tpff) Mli.s ') cKp Î 
Bs' 

and it can be shown that 

.(a) 
V c (r) 

U 
VhIv 

2b(r) 
f(r.s') ds' 

s'(l-s')Vs'(l-s') 
(73) 

Here the integration over s' is done by the trapezoidal rule from s' = 

0.10 to O.9O, and the ends are integrated analytically after substituting 

the parabola for f(s )' at the leading edge and the straight line at the 

tra i 1ing edge. 



NUMERICAL RESULTS 

Calculations have been performed for seven marine propellers, one 

5-blade, one 7-blade, four 3-blade, and one 4-blade. The 5-blade and 

7-blade propellers operate in two different wakes; the wake designated by 

Test No. 1 is associated with portside data and that designated by Test 

No. 4 with starboard data, in the propeller plane behind the same vessel. 

The 3-blade propellers operate in a 3-cycle wake generated by a screen in 

a 24-inch water tunnel. The 4-blade propeller is the one treated in 

earlier reports as having sector-form blades without skewness, but here 

its true geometry is taken into account. The pertinent information on 

these propellers is tabulated below. 

TABLE 1 

MODEL PARTICULARS 

Propeller Characteristics 

No. of 
Blades 

r- 

D iameter, ft 
P/D at 

EAR 0.7 r0 Skewness 

5 

7 

3 

3 

3 

3 

4 

16 

16 

1 

1 

1 

1 

21.5 

0.597 

0.584 

0.3 

0.6 

1.2 

0.6 

0.36 

0.714 

0.6g4 

1.086 

1.077 

1.073 

I.07I 

1.03 

0 

22.5° 

0 

0 

0 

120.0° 

6.7° 

Wake Generator 

Model ) Tests No. 1 

Model ) and No. 4 

Screen 

Screen 

Screen 

Screen 

Model AE21 

SPANWISE LOADING DISTRIBUTION 

For the 4-blade, 5-blade, and 7“blade propellers, the assumed chord- 

wise mode shapes were first mode (flat plate), first three modes, first 

four modes, and first five modes. In the case of the 3-blade propellers, 

the first three, four, and five modes were considered; the flat-plate mode 
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was not treated except for propeller No. 4118 at q = 3. Typical spanwlse 

loading results are presented in Figures 2-7. It Is apparent that the 

spanwise loading distribution, and therefore the steady and time-dependent 

thrust, converge to a stable vaiue after several chordwise modes. For 

these calculations the propeller span has been divided into equal strips, 

0,1 propeller radius in length. 

Calculations have in some instances been made with double the number 

of strips or control points, considering only the chordwise distribution 

described by the first three terms of the Birnbaum series. Figures 8 and 

9 show the spanwise loading distribution on the 5-blade propeller in 

Wake No. 4, for q = 0 and q = 5, and compare the results with seven con¬ 

trol points (solid lines) and fourteen control points (dash lines). The 

trends of solid and dash lines are similar. At q = 0 the total loading 

from fourteen strips is 2-percent less and at q = 5 10-percent less than 

from seven strips. Similar calculations for the 7-blade propeller in 

Wake No. 4 show that at q = 0 the total loading from fourteen strips is 

the same as that from seven strips and that at q = 7 it is 7-percent less. 

The ratios of theoretical mean thrust to the mean thrust calculated 

at DTMB are shown below. 

TABLE 2 

RATIO OF THEORETICAL TO DTMB - CALCULATED MEAN THRUST 

Propel 1er 

5-blade 

7-blade 

No. of 
Control Pts 

7 

14 

7 

14 

Wake 
A 

Test No. 1 

!. 15 

1.18 

Test No. 4 

1.14 

1.12 

1.16 

1.16 

The theoretical values reported here are those calculated by the consistent 

mathematical model described in previous sections, with directional deriva¬ 

tives in the axial direction normal to the assumed staircase path. The 

values of mean thrust obtained by the inconsistent model, a staircase 
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approximation of the helicoidal wake of the blades with derivatives normal 

to the helicoidal surface, are about 10-percent higher than these, which 

are already higher than the DThB calculated thrusts. 

Table 3, following, compares values of the ratio of double amplitude 

of vibratory thrust to mean thrust, as calculated here and by quasi-steady 

theory at DTMB, with experimental data obtained by DTMB by means of two 

different testing techniques. The Davidson Laboratory theoretical results 

are those computed with seven control points. 

The results of calculations for the 4-blade propeller, not simplified 

as In the earlier Davidson Laboratory reports but with actual blade form 

and skewness, are compared In Table 4 with the experimental data from 

model tests at DTMB. These calculations also were done with seven control 

points. 
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TABLE 3 

No, of 
Blades 

5 

CORRELATION OF RESULTS OF THEORY AND EXPERIMENTS 
Double Amplitude of Vibratory Thrust 

in Percent of Mean Thrust 

Characteristics 

Test No. 1 

1st Blade Freq, 

Unsteady 
Quas I-steady 

2nd Blade Freq, 

Unsteady 
Quasi-steady 

Test No, 4 

1st Blade Freq. 

Unsteady 
Quasi-steady 

2nd Blade Freq. 

Unsteady 
Quasi-steady 

Test No. I 

1st Blade Freq. 

Unsteady 
Quasi-steady 

2nd Îîlade Freq. 

Unsteady 
Quas1-steady 

Test No. 4 

1st Blade Freq, 

Unsteady 
Quasi-steady 

2nd Blade Freq, 

Unsteady 
Quasi-steady 

Theory 

Mode 3 Modes 4 Modes 

15.0 13.0 II.8 
13.3 12.5 12.6 

1.5 1.46 1.38 
1.3 1.38 1.42 

11.6 10.4 9.4 
10.5 9.8 9.8 

1.6 1.47 1.43 
1.3 1.37 1.43 

2.5 2.61 2.38 
1.5 1.41 1.51 

1.1 1.07 1.03 
0.25 0.18 0.25 

1.3 1.43 1.28 
1.2 1.16 1.19 

1.3 1.11 1.15 
0.11 0.13 0.04 

DTMB 
--—^ Quasi-steady 
5 Modes Calculations 

12.9 
12.4 16,2 

1.48 
1.30 1.6 

10.3 
9.8 12.3 

1.43 
1.34 1.4 

2.60 
1.41 2.5 

I.M 
0.15 0.62 

1.44 
1.16 1.6 

1.18 
0.07 0.Ç4 

ÖTHB 
Experiments 

10.4 , 13.8 

1.76» 1.46 

8.8 , 13.8 

1.42, 1.46 

1.64, 3.10 

1.0 , 0.53 

1.4 , 3.10 

0.6 , C.53 
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TABLE 4 

MEAN THRUST f AND DOUBLE AMPLITUDE OF VIBRATORY THRUST IN 
PERCENT OF MEAN THRUST AT/T FOR 4-BLADE PROPELLER 

T, lb 

1 Mode 

Theory 
_A__ 

3 Modes 4 Modes 5 Modes 

DTMB 
Model 
Data 

167,300 185,700 182,600 184,700 173,000 

AT/T (1st blade 
frequency) 

Unsteady 15.1 

Quasi-steady 14.1 

12.5 11.5 12.2 26.6* 

13.1 13.6 13.2 

Average of model data; first blade harmonic from full-scale ship trials 
is 13.8 percent. 

For the series of 3-blade propellers, calculations have been performed 

to evaluate the Ry vs. J curve in the open-water condition (i.e., thrust 

coefficient versus advance ratio) and to evaluate the vibratory Ky co¬ 

efficient at design J by the unsteady and quasi-steady methods. The 

results of these calculations are summarized in Tables 5-7, where they 

are compared with the corresponding DTMB measurements. 

These propellers operated in the wake generated by a screen in such 

manner that the mean (zero harmonic) of the wake velocity, averaged over 

the blade span, was equal to the free-stream velocity. There is then only 

negligible contribution of the wake to the steady-state loading on the 
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! 
7 

i 
fi i 

1 
i 

J 

propellers. This steady-state loading can be said to equal the loading 

In the open-water condition and arises, in the present theory, from 

camber and flow-angle effects only. 

It is interesting to note that, although the theoretically determined 

Rj-curves are higher In magnitude than the experimental data for the three 

non-skewed propellers, they have approximately the same slope (Fig. 10); 

and that the smaller the expanded area ratio the closer the results of 

experiment and linear theory. The 120-degree skewed propeller certainly 

stretches this theory, but in spite of this the vibratory thrust calculated 

by the theory shows the proper relation to the other propellers. 

TABLE 5 

CORRELATION OF THEORETICAL AND EXPERIMENTAL Kj VALUES 
IN THE OPEN-WATER CONDITION FOR 3-BLADE PROPELLERS 

Theory 
_A_ I 

j EAR J 

0.3 0.701 

J 0.841 

* 1.01 

I 0.6 0.693 

0.831 

i 0.997 

3 Modes 4 Modes 
8 Contr. Pts‘. 8 Contr. Pts. 

0.207 0.204 

0.168 0.168 

0.110 0.115 

0.227 0.221 

0.180 0.179 

0.109 0.114 

5 Modes 3 Modes 
8 Contr. Pts. 16 Contr. Pts. 

0.206 

0.168 0.163 

0.111 

0.222 

0.178 

0.109 

/ 

Experiment 

0.195 

0.150 

0.090 

0.208 

0.150 

0.080 

, 1.2 0.703 0.275 

j 0.844 0.216 

1.013 0.124 

' 0.6 0.876 O.O99 
(Skewed) 

i 

1! 

i 

0.281 O.272 

0.226 0.216 

0.141 O.I29 

0.102 0.101 

0.206 

0.225 

O.I5O 

O.O7O 

O.I50 

‘ 
■U . 
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TABLE 6 

CORRELATION OF UNSTEADY SINGLE AMPLITUDE Kj VALUES 

FOR 3-BLADE PROPELLERS AT FIRST BLADE FREQUENCY 

EAR J 

0.3 0.841 

No. of Spanwlse 

Control Points 

Theory 

3 Modes 

8 

16 

0.060 

0.056 

4 Modes 

0.055 

5 Modes Experiment 

0.059 ) 

0.6 0.831 

1.2 0.844 

8 

8 

16 

0.6 0.876 
(Skewed) 

8 

0.061 

0.041 

0.033 

0.010 

0.055 

0.043 

0.060 

0.038 

0.009 0.009 

TABLE 7 

QUASI-STEADY SINGLE AMPLITUDE KTq VALUES FOR 3-BLADE 

PROPELLERS AT FIRST BLADE FREQUENCY 

EAR 

0.3 

J 

0.841 

No.of Spanwise 

Control Points 

Theory 
A 

3 Modes 

8 

16 

0.069 

0.066 

4 Modes 

0.060 

0.6 

1.2 

0.831 

0.844 

8 0.065 

8 

16 

0.055 

0.057 

0.068 

0.050 

0.6 
(Skewed) 

0.876 8 0.011 0.010 

0.053 

0.066 

O.032 

O.OO78 

5 Modes 

O.O69 

0.064 

0.038 

0.010 

r~ 

U 1 

- 

il 1 

il i 

il i 

il 
I 5 

1 

I î 

I I 
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Another comparison that has been made concerns the differences between 

spanwise loading as calculated according to the present three-dimensional 

theory and by a stripwise application of two-dimensional non-stationary 

theory. As shown in previous reports^* the two-dimensional solution of 

the loading is 

L0(r,q) = 2TTPfua ebr -Hiÿ-r-1 s(k) e"îqcr 

where a and r are dimensional 

S(k) is the Sears function 

k = is reduced frequency 

Table 8 gives the ratios Ry2 of spanwise integrated lift by three- 

dimensional theory to spanwise integrated lift by the stripwise method, 

for the 3-blade non-skewed propellers. For the reduced frequency k = q©/* b 
the chordwise measurement at 0.75 radius is chosen to typify the blade. 

The differences between phases of the loading by the two methods, (ß3 - ß3), 

at 0.75 radius are also tabulated. 

TABLE 8 

LIFT RATIO Rrj/p FOR 3-BLADE PROPELLERS 

EAR k = q9j 
3/3 

at 0.75 r 

(¾ - u 

at 0.75 r 

0.3 

0.6 

1.2 

0 

0.82 

0 

1.64 

0 

3.29 

0.376 

0.656 

0.234 

0.495 

0.154 

0.369 

0 

9.8° 

0 

16.4° 

0 

24.0° 
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As EAR decreases, the three-dimensional lift approaches closer to the two- 

dimensional value, at lower frequencies, whereas, when EAR increases, the 

coincidence of values is postponed to higher and higher frequencies. 

An example of the variation of phases over the span can be seen in 

Figure II for the 3-blade propeller of 0.60 expanded area ratio, at q = 3. 

The charts exhibit, In addition to ß3 and ß2 , the input phases 

of the wake normal components to the blade with respect to the midchord 

line. Figure 12 shows the differences between ß3 and the input phases 

for the three non-skewed 3-blade propellers of different expanded area 

ratio, and Figure 13 the differences between ß3 and ß3 , at q = 3. 

(At q = 0, the input phases as well as ß3 and ßs are all I80°.) 

These phase charts show that the effects of three-dimensionality are 

more pronounced at the hub and the tip than around midspan; and Figure 12 

shows that the phase lag after the input wake increases with increasing 

expanded area ratio. 

Similar trends can be shown for the other propellers. 

CHORDWISE LOADING DISTRIBUTION 

It has been shown that the spanwise loading distribution and hence 

the thrust converge after a few terms of the Birnbaum distribution are 

taken. This means that the integrated effect of the loading distribution 

along the chord is not changed appreciably by adding more chordwise modes. 

However, the chordwise loading distribution itself has shown no sign of 

convergence even when,in the case of the 3-blade propeller 4118, ten terms 

of the Birnbaum series were taken. 

It seems that the solution tries to change the magnitude (or mitigate 

the effect) of the leading-edge singularity through the contribution of 

higher-frequency terms of the sine series. As is shown in Appendix F, 

the sine series builds up a term proportional to the cotangent term, which 

reduces the coefficient ^ of the Birnbaum dIstribution 

CO 

& ^ cot *| + ^ ^ sin nö 

n= I 
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(n) At the same time the coefficients 7 of the remaining sine series are 

also reduced. The solution develops a pressure distribution whose center 

moves away from the -¿-chord line towards the leading edge, but which leaves 

unchanged the nature of the leading-edge singularity. The latter remains 

the same as in the two-dimensional case. Although the high-frequency terms 

do not contribute to the spanwise distribution or the mean and vibratory 

thrust, their presence is important in the formation of the chordwise dis¬ 

tribution and is felt mainly in the neighborhood of the leading edge and, 

to a smaller extent, toward the trailing edge. 

The calculations have shown that the coefficients not only 

remain of the same order of magnitude but, with increasing number of modes, 

tend to a constant value c . it appears that the coefficients of the sine 

series are of the form 

(n) = a + c 
n 

where a -♦ o as n œ . The assumed chordwise distribution can then be 
n 

written as 
CO CO 

cot *1 + ^ ^ (¿^-c) sin nö + c ^ ^ sin nö 

n=l n= 1 

the last term of which represents a divergent series, whose value neverthe¬ 

less exists in the Cesàro sense and is given by 

£si 
c > s in n0 « I cot -| 

n=l 

(see Appendix F). 

The chordwise distribution can be modified to the form 

(o) 
H 

+ |) cot I + c) sin n0 (74) 
n=l 
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s Ince 

1 ¡m c) = 1¡m a - o 
_ n JV*co n-*m 

Hence the sum will converge and the chordwise distribution will rapidly 

reach Its final form. 

This observation brings out two important facts: 

(a) The expansion of the chordwise distribution in terms of the 

Birnbaum seríes does not satisfy the claim that the expansion functions 

are linearly Independent, since the sine series gives rise to a term pro¬ 

portional to cot (9/2). 

(b) The chordwise distribution is established after employment of 

the Cesàro summability which is a useful approach in obtaining the limit 

of slowly convergent or even divergent series. This method suppresses the 

contribution of the higher-frequency constituents and puts emphasis on the 

lower ones. 

Application of Cesàro sums to the sine series of the chordwise dis¬ 

tribution given by 

$ = cot T + sin n0 n 2 f 

will yield 

a = £ cot 

n= 1 

M 

I * i: 
n=r 1 > ' 

sin n9 (75) 

It is shown in Appendix F that, as Mco, (74) and (75) are identical, 

Therefore the approach of subtracting a constant term from the sine coeffi¬ 

cients, and adding half its value to the cotangent coefficient, and the 

approach of applying Cesàro summability to the partial sine series are 

equivalent. In spite of the lower rate of convergence of the sine series 

In the latter approach, this approach has the advantage that the constant 

term is never required explicitly. Calculations have shown that both 

approaches yield approximately the same results. 
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The results of calculations of the unsteady chordwise loading dis¬ 

tribution at 0.75 radius of the 3-blade propeller 4118 (EAR = 0.6) are 

exhibited in Figures 14-16 for a series of modes M = 1 to 10. Figures 14a 

and 14b present the real parts, Figures 15a and 15b the imaginary parts, 

and Figures 16a and 16b the magnitudes of the unsteady loading for q = 3. 

It appears that, except for the neighborhood of the leading and trailing 

edges, the distribution is being established after M = 6. 

In an attempt to minimize the effect of truncation of the chordwise 

distribution series, use has also been made of the least-squares method. 

This method has been used in the field of aerodynamics to Improve the 

solution of the unsteady lifting-surface integral equation by the colloca¬ 

tion method.1'7,18 It was introduced there in an attempt to minimize errors 

between the self-induced velocity and the downwash distribution at various 

points other than the collocation points, and to distribute the errors 

uniformly over the entire planform. In the present case it is utilized to 

minimize errors between self-induced velocity and downwash distribution 

due to truncating the assumed chordwise series. However, the results of 

the least-squares method have been very close to the direct solution of 

the integral equation, indicating that the latter is the best possible 

solution with the presently available means. It can be concluded that the 

truncation of the series is not the hindrance to rapid convergence of the 

chordwise distribution, but that the basic trouble is the assumed chord- 

wise modes. 

Another facet of the present study is the capability of the program 

to judge how well a given propeller Is designed, either for open-water or 

prescribed wake conditions. Figures 17a and 17b present the normal sum 

and Cesàro summability of the chordwise loading distribution in the steady 

state case, q = o , for the 3-blade propeller designed for operation In 

open water at J = 0.831. These show that the distribution converges after 

three or four modes are taken, and is of the expected form. Figures 18a 

and 18b present similar calculations for the off-design advance ratio 

J = 0.700. The contrast is vivid. The presence of the singularity at 

the leading edge Is more pronounced than in the design case. 

'$;r 
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Figures I9a and igb show the steady-state chordwise distribution for 

the wake-adapted 5-blade propeller, when normal and Cesaro sums are taken. 

When the effects of wake are separated from the flow angle and camber 

effects (see Figures 20 and 21), the chordwise distribution is not estab¬ 

lished after five modes are taken, even with the Cesaro summabillty method. 

When their effects are combined, as In Figures 19a and 19b, the chordwise 

distribution as obtained either by normal summation or by Cesaro summabil- 

ity is similar to that of the 3-blade propeller which was designed for 

open-water conditions. 
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CONCLUSION 

A theory has been developed for the evaluation of the steady and time- 

dependent loading distributions on the blades of a marine propeller opera¬ 

ting in spatially non-uniform flow. The resulting surface integral equation 

has been solved by means of the collocation method in conjunction with the 

generalized lift operator for a prescribed set of chordwise modes which 

reproduce the proper leading-edge singularity and fulfill the Kutta condi¬ 

tion at the trailing edge. 

General computer programs have been developed to accomodate any 

geometry of propeller operating in a specified non-uniform inflow condition 

for a large but finite number of chordwise modes. The calculations indi¬ 

cate that the spanwise loading distribution and hence the steady and vibra¬ 

tory thrust are approximated by a rapidly convergent series of chordwise 

modes. After the first three terms, adding chordwise modes does not 

appreciably change the integrated effect along the blade chord. 

A comparison of theoretical and experimental results for the vibratory 

thrust shows good agreement for the most part. There are still discrepan¬ 

cies. Hence questions inevitably arise as to limitation of the linearized 

theory and failure of the Kutta-Joukowski hypothesis. However, the validity 

of the experimental results should not be excluded from question, 

it is believed that, in the case of propellers operating behind a 

model, a major cause of discrepancies between measured and calculated 

vibratory thrust arises from the lack of precise knowledge of wake har¬ 

monics. The wake harmonics are derived from wake surveys mads in the 

absence of the propeller and hence any effects due to the action of the 

mean flow induced by the propeller on the hull boundary layer are not in¬ 

cluded. Indeed, recently reported experiments at the Ordnance Research 

Laboratory of Pennsylvania State University have revealed considerable 

reduction of certain harmonic constituents of the wake behind a body of 

revolution with appendages, when wakes measured without and with propeller 

running were compared. It is conjectured that the mean pressure reduction 
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generated by the propeller on the near-afterbody surface reduces the ad¬ 

verse pressure gradient and so alters the shape of the wake shed into the 

propeller disc. Measurements to verify this statement should be made on 

ship models. 

Although the spanwise loading distribution and the steady and vibratory 

thrust converge to a stable value after three to five chordwise modes, the 

loading distribution along the chord does not converge even when ten terms 

of the Birnbaum series are taken. With the introduction of the Cesâro 

summability, which is a proper method for summing diverging or slowly con¬ 

verging series, the distribution Is, after six modes, established over the 

major portion of the chord, but not in the neighborhood of the leading and 

trai 1ing edges. 

The cause of the slow rate of convergence of the chordwise distribution 

is attributed to the '■ype of assumed chordwise modes (the Birnbaum series). 

The terms of this series are not linearly independent, since part of the 

sine series produces a cotangent term, which when combined with the flat- 

plate mode reduces the value of the coefficient of this first mode. At 

the same time the coefficients of the sine series are also reduced in such 

a way that the combined effect on the pressure distribution is to move the 

center of pressure away from the ¿-chord line toward the leading edge. 

The fact that application of the least-squares method yields results 

very close to the normal solution of the integral equation indicates that 

the present solution is the best possible with the presently available 

means. 

The capability of the present program to pass judgment on whether or 

not a given propeller is well designed under open-water or wake conditions 

should be considered of very practical interest. , 

As for the conclusion of earlier reports, that the two-dimensional 

unsteady aerodynamic theory applied in stripwise manner is invalid for 

the marine propeller, this still holds true. With propellers of aspect 

ratio 1 to 2 and reduced frequency 1 to 2.5, neither the airfoil theory 

nor the low-aspect-ratio wing theory can be utilized. 
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FIGURE I. COORDINATE SYSTEM AND NOTATIONS 
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FIGURE 2. SPANWISE LOADING ON 3-BLADED PROPELLER (EAR=0 6) 
IN SCREEN-GENERATED WAKE 
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FIGURE 3. SPANWISE LOADING DUE TO SHIP WAKE ONLY ON 4- 
BLADED PROPELLER 
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q.-o 

r/r0 

FIGURE 4. STEADY SPANWISE LOADING DUE TO WAKE, CAMBER 
AND FLOW ANGLE ON 5-BLADED PROPELLER IN 
WAKE NO. I 
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FIGURE 5. UNSTEADY SPAN WISE LOADING DUE TO WAKE NO.I 

ON 5-BLADED PROPELLER 
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r/ro 

FIGURE 6. STEADY SPANWISE LOADING DUE TO WAKE,CAMBER, 

AND FLOW ANGLE ON 7-BLADED PROPELLER IN 

WAKE NO. I 
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■ 7 CONTROL POINTS 
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FIGURE 8. STEADY SPANWISE LOADING DUE TO WAKE NO.4, 

CAMBER, AND FLOW ANGLE ON 5-BLADED PROPELLER 
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FIGURE 9. UNSTEADY SPANWISE LOADING DUE TO WAKE N0.4 
ON 5-BLADED PROPELLER 
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FIGURE 13. PHASE DIFFERENCES (/03-/32) FOR 3-BLADE PROPELLERS 

AT BLADE-FREQUENCY 
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APPENDIX A 

PROOF OF THE EQUIVALENCE OF EQUATIONS (28) AND (29) 

The derivatives with respect to X and ® indicated in Equation (29) 

are, with the help of Equation (29b), 

03 CO 

ÒX 
(1) klm(kp) Km(kr) e-'Xk dk 

m=- 

(1) = - 1 V eim0 C kaljkp) K_(kr) e"iXk dk 
/3 R H /,,J 

»*cc ÖX' 
m m 

m=-co 

JL ,1 
Ò0ÒX 

(5) ■ n Klm(kp) K^kr) p-""' dk 

jl (i) 
de? lRJ 

CD 

¿ V m2eim0i“ I (kp) K (kr) 
n / y J m m 

-iXk .. 
e dk 

(A-1 ) 

After substituting 

X = 

0 + cp - 0 
-Û-2—2. . (x.§) 

the 0 integral becomes 

A-1 
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_r 

TT a V 1+a2 rS 

n o 

-iqte^ -e ) ” lm0 

e e 

\JkP) Km(kr) 

-Î(Veo> * 
dk d® 

The © integration involves 

(A-2) 

1 
i(m-q)© -i~ © 

d0 = na 6 [a(m-q)-k] 

G +9 -cp 
n o o 

- iae 
i(m-q)(e +9 -cp )-i — (0 +0 -cp ) 

' r\ o o' a n 0 0' 

k-a (m~q) 

(A-3) 

It can be easily shown that Equations (28) and (29) are equivalent, by 

substituting (A-3) into (A-2) and making use of the following relation for 

the Dirac delta function, 6( ) , 

f(k) 6[a(m-q)-k] dk = fta(m-q)] (A-4) 

A-2 
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APPENDIX B 

APPROXIMATION OF THE INFINITE p-SERIES OF K_ S 

Equation (37a), with 2 = (X3+ r3 + pa)/2rp , can be written as 

Kg = 

CO 

■E 
2e iq(Veo) 

P=1 Vl+aV ap 
VrP “ Qa i(z) 

ÔX3 q 2 

(rp)^ q-^ (B-1) 

where X = p 0^/a 

If use Is made of the relations 

Vi<z> = nV^ J” Jq(kr) Jq(kP) e_Xk dk (B-2) 

à = ■ nVrP J k Jq(kr) Jq0<p) e‘Xk dk (B-3) 

¿i- V*(z) = J” kSJq(kr) jq(kp) e’Xk dk (B-4) 

B-1 
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then 

^ -L 

oo - iq(9 -0 ) 
2e o o' 

p=l 
,,22 
Ha r ap 

■^rp ^17J" l<Sjq(,<r) Jqikp) e ° dkJ 

- lq'|fp)^q [nV^ J kJq(kr) Jq(kp) 

-p6 k/3 
e dk ] 

(rp) 
3/s [nV^| -pö k/a -, 

Jq(kr) Jq(kp) e dk 

(B-5) 

But 
00 -pê k/a ^o1,73 

o e 
e E 

p=1 
l.e-6ol</a 

(B-6)* 

It Is seen from Figure (B-l) that a good approximation of 

0 2k2 
o e 

0 k/a 
o 

|_e'0ok/a 

is 5,g4 e”0.678 0ok/a _|g ^ eok/a 

+ 13.59 e 
-1.30 eok/a 

(B-7) 

* 
See L. B. W. Jolley, Summation of Series. Dover Publications, Inc., 
New York, 1961. 

B-2 
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of 

-5ok/a e_ 

l-e-§ok/a 

I s -0.67 ê0k/a + e-0.60 eok/a _ -0.75 60k/a 

(B-8) 

A satisfactory approximation for 

-eok/a 
Is r0ol</a + e-2 ë0k/a + e-3 §0k/a + 6_7 e-5.3 i0k/af 

(B-9) 

With substitutions <B-7,8,9) and(B-2), Equation (37a) becomes 

K2 rs 2e -|^V0o) 

r3 ap 

-a 
- >9.53 Q0_±(za) <1"2 

+ '3-59 
q-2 ’ 3 

ia3(r3V)q f, 
0o(rp)3/s L Qq4(z4) + Qq4(zB) " ] 

+ 
Qn 1 (2e)+%.^9) + 6.7Qq.,(Zl0 ■] 

where 

(B-10) 
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'•3 

l^y. . ■•] ~ 

-Kiy.-.’b 
/2rp 

3 + pa /2rp 

'10 

/2rp 

] 
a , a r + p /2rp 

i^y 
Similarly, Equation (37b) can be approximated by 

Ka -- 

-iq(cp -G ) 
-2e ° ° _af_ 

(rp)Va 8 = 
[5.91* ¢,.,.(¾ ) - 19.53 ¢,.,(¾) 

+ 13.59 Q^iUa) 
q-t ] 

B-4 

(B-ll) 

(B-12) 
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FIGURE B-l. APPROXIMATIONSOFTHEINFINITE p-SERIES 

B-5 
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APPENDIX C 

EVALUATION OF f(m, q, n) 

The ®-Intégrât ion (in Equation [41]) results in 

f- 
e +0 /2 

n o 
- iq© , 

e cos m© d© 

6n-(Ven) n oo 

0 +0 /2 
i(m-q)© -i(rrH-q)@ n 0 

m-q m+q 
0 -cp +0 

n o o 

for m q 

0 :.- 

2 + 
le 

4q 

0 +0 /2 
n o 

0 -CD +0 
n o o 

for m = q ^ 0 

= © 

0 +0 /2 
n o 

0 -cp +0 
n o o 

for m = q = 0 

(C-1) 

Then for m q , 

f(m,q,n) = - 
2(m-q) 

. i (m-q) 0 I i (m-q) 0 /2 -iq(<P -0 ) -im(cp -0 ) 
le ' ^ n I o o o o o e - e i 

-i(irrt-q) 0 
le 

2(rr>fq) 

(nH-q) 0 /2 - iq (cp -0 ) im(9 -0 ) 
0 e ° ° - e 0 0 I (C-2) i 

C-l 
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for m = q 0 , 

, -¡q(VeJ 
f(m,q,n) = e " 

0 ¢-0 , "l2qt1n -iqG o . c o . ie 
"4” + 2 + 4q e 

- e 
iq^ -0/,, o o I ie 

(C-3) 
and for m = q = 0 

0 
f(m, q, n) = ~ + 

¿ o o (C-4) 

Since 6 
n 

+¡(m±q)én N for m±q = \N , \ = 0,1,2,3 ... 

0 for all other values 

and 

n = l 

N since q is always an integer multiple of N . 

Utilizing the above results of Equations (C-2,-3,-4) 

yields the expressions given by Equation (43) in the text. 

C-2 
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APPENDIX D 

EVALUATION OF INTEGRALS 1^ I2, AND L 

r+ß 

d) I im 
X~*0 

f 1' .w # 

Jr-ß » "-1 

With Equation (50), this becomes 

r+ß 

I = lim 
3 X-0 L 

X(r3+P3) 

(rp)B/2 p 

«3 

E 
a s 

ms 

5=0 

(2.1)S-lt^t£bms(2")S-' 

s=l 

+ b In(z-I) + In(z-I) 7 b s(z-l) 
m i Z._J ms 

CO 

E 
s-1 

s=2 

dp 

r+ß 

= i îm 
X-0 

and 
2-1 

L 
X(r3+P3) 

(rp)B/: 

mo 

(z-1) 

+ b In (z-1) 
mi 

dp (0-1) 

where (z-1) = 
2rp 

Since ß is'small, p can be approximated by r outside the factor 

[X2 + (r-p)2]. 

Then 

U » Urn 
X-0 

4b 
r+ß 

bn» „ T-áE- * fía*- f 

7 * Jr.s IX2*(r-P)a) r* J, 
r+b 

ln fX3+(r-p)s7 dp 

r-ß 
(0-2) 

D-I 

.¿lí. j 
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Let (r-p) = Y . 

4 b 
l3 «s 1 îm 

X-0 

mo i ß dY 2 b *ß 

— + —^ X 
Xa+Ys r4 ! ln (X3 + Y3) dY 

(D-3) 

But 

Í dY 
1 im X 

X-0 J-ß X2+Ya 
1 im 

X 

r -ï y 
m tan 7 °l j = O 

and 

1 îm X 
X-0 

í ln (Xa + Y3) dY 

•J-ß 

= O 

Therefore 

'3 -0 (D-4) 

(2) 

r+B 

1 îm 
X-0 
z-1 

L Q j_(z) dp 
m1“ 2 

With Equation (49), this becomes 

1 im 
X-0 
z-l 

r+ß r 

f S ams (2“,)S + ,n Z) 
•^r-ß s=o s=o 

b_ (z-1) 
ms 

dp 

«s 

r+ß 00 

( ^ •'r-ß s=o 

a + b In ms ms 
ilz£Ï 

Zr3 

r 
llrül. 

Zr3 
dp (D-5) 

D-Z 
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Let u = , du = ^ , dp = ßdu . 

«a 2ß £(5) 
s=o 

Tzs+ry a + b In ( —) -2b n 
ms ms \2r3/ mS (2s+n 

(0-6) 

(3) 1 im 
X-0 

r*+ß 

j ß Lrp Q^(z) + xS CHdp 

Using the expansions about z = 1 (Equations [50] and t5l]) gives 

rp b 
mo , 

IT rp 
S = l 

[rp Ci(z) + x2 C*(z)] = + rp ¿ ^amsS+ bms) ^ 
s-1 

+ rp ]n (2-1) ^ bms s(z-l) 

s=l 

. Xs b Xa b s- I _ _mo +_nu 

’ (2-l)S (z-1) [Cont fd] 

D-3 
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+ Xa (integrable terms) 

L^kdi^Ü + b xL 
mo /_ !\3 mi (z-l) 

(2-1) 

+ rp 

s= 1 
[' 

a s +• b 1 + s In (z-l) 
ms ms 1 (z-0 

s-1 

+ Xa (integrable terms) (D-7) 

Therefore 

• f 

-4° Jr- 

r+3 

ß 

b [,rp(z-l)-0 + b X 

mo (z"l)a mi 'z" * 

CO 

ZÎ 
s=l ' 

+ rP > <ams s + bms I I + s In (z Jj + s ln (z-l)j I (z- l)5"’ Í dp (D-8) 

(a) 

rp(z-l)-X3 

(z-D3 

2r p [(r-p) -X ] _ 2r3 a 

[Xa + (r-p)3 ]s dp [x3+(p-r)2] 

« 2r 
d» [x3+(p-r)a] 

Hence 

1 im 
X-0 

T+ß r+ß 

f ^ b trP<z-')-x2J dp « 2r4 b 

J,.,3 ^ (z-l)s ^ L(P--)aJr- 

4r4 b 
mo 

r-ß (D-9) 

D-4 
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(b) 

I im 
X-0 

2 r3 lim 
X-0 

X3 
- dp «3 2r3 1 im 
X3+(r-p)2 X-0 

Ãá 2r3 1 Im X 
X-0 

0 (0-10) 

(c) 

1 im 
X-0 

5 + b fl + s 
ms L 

(z-l)S * dp ? 

S + b 
ms 

ÍLzè)/ 

2rs 

and with u = , du = ^ , and dp = ßdu , 

* c 

-n 

dY 
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\ 

The sum of (a), (b), and (c) yields 

D-6 

nommntRunH 
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APPENDIX E 

EVALUATION OF THE INTEGRALS IN EQUATIONS (56a) AND (56b), 
FOR THE REGIONS ADJACENT TO THE SINGULARITY STRIP, 

BY THE LAGRANGE INTERPOLATION METHOD 

The Integrals to be evaluated are 

r r-0.01 

I 
r-0.05 

r-0.01 

i 
L r-0.05 

+ 

+ 

f 

i 
r+0.05 

r+0.01 

r+0.05* 

*Í-+o.oi 

(1) u. 

As p approaches r , behaves like In (p-r)a (see Equation [4g] 

of the text). If l4 is taken as 

4 = Íií£i 4 J P-r dp 

where (E-l) 

rf s (p'r) V^z) 
F(p) = -s^2— 

the function F(p) can be expanded easily about the singularity p « r by 

E-l 
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the Lagrange interpolation formula 

where 

F(p) 
F, 

(P-P|) nn(pI) 

= 0, 1, ... n 

nn(p) = (p-p0) (p-Pi) ... (p-pn) 

iTfp,) = -T- H (p) evaluated at p = p. 
nXKi' dp n'^' i 

F, - F(p,) 

In the strip from r to r + 0.05 , with n = 5 » ^ = 0.01 » PQ = r » 

Px “ r + ô , p5 = r + 56 . 

Then 

and 

n'(p ) = (-6) (-25) (-3Ö) (-46) (-56) = (-1)5 65 5! 
n 0 

n'(p.) = (6) (-6) (-26) (-36) (-46) = (-1)4 6s 4! 1 ! 
n 1 

etc. 

F(p) 
(-I)5'1 (p-r) (p-r-6)... (p-r-5^) F 

1 ! (5-1 ) ! (p-r-¡6) 1 
(E-2) 

>VSee J. B. Scarborough, Numerical Mathematical Analysis. The Johns Hopkins 
Press, Baltimore, Md., and Oxford University Press, London; 1958. 

E-2 
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Since Fo = F(r) = 0 , It can be shown that 

F(p) = — g (p-r)B + gjô (p-r)4 + g26a (p-r)a + ga6a (p-r)2 + g464 (p-r) 

(E-3) 
and 

r+0.05 

r+0.01 

£(p).,.dp = ± 

p-r 

(o-r)B c (o-r)4 6a(D-r)a 6a(o-r)a -i— + g 6 M-LL. + g --i- + g -UL-L 

0 5 4 3 2 

+ g/4p 

r+0.05 

r+0.01 (E-4) 

where 

= 624.8 g + 156 gi + 41.333 gs + 12 g3 + 4g4 

^ Fa 
- +- F4 FS 

- + - 

4!!! 3!2! 2!3! 1!4! 5! 

Fj F3 F3 F, 
g =-14 —+ 13 - - 12- + 11 - 

411! 3121 2!3! I!4! 
,o!i 

5! 

FX FS , F3 , F4 Pb 
71 -- 59 -+ 49 - - 41 -+ 35 — 

4!I ! 3¡2! 2!3! 1!4¡ 5! 

Fi Fg F0 F4 Fb 
g3 =-154 -+ 107 - 78 -+ 61 --- 50 - 

4!!! 3!2! 2!3! 1!4! 5! 

g4 = 120 
4! 1! 

F3 , F3 F+ , FB 
60 - + 40 - 30 - + 24 — 

3!2! 2!3! 1!4¡ 5! 

E-3 

CT.n^^TOrortianiiEvrajii 
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\ 

It can be shown lat 

r-0.01 

Jr-0.05 
p-r dp 624.8 go + 156 g1 + 41.333 g3 + 12 g3 + 4 g4 

(E-5) 

where the F. which make up the gj are now opposite in sign as well as 

different in composition, since in this case p¡ = r - ifi instead of 

r + 16 . 

The sum of (E-4) and (E-5) can be expressed in terms of F, as 

fr+0.05 

J r+0.01 

,r-o.or 

r-0.05 

F(p) dp 

(P-r) 

= O.SIlUFi-F.j) + 0.71H.(F3-F-3) + 0.1777. (F3-F.3 ) 

+ 0.3555. (F4-F_4) + 0.0622. (Fb-F_e) (E-6) 

where 

F = 0.01p 
Q 1(2 

m-2 £ 

(r + 0.01 p)^ 

and 

ra + (r + 0.01p)g 
zp = 2r (r + 0.01p) 

p = ± 1, ±2, ±3, ±4, ±5 

E-4 
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(2) Ib 

As p approaches r , O/ ï(z) behaves like 
m- 2 

_J_ 

(p-r)s ‘ 
Let 

where 

(E-7) 

Then the function f(p) can be expanded readily about p = r , since 

f(r) Is zero. Use of Equations (E-2) and (E-3) yields 

-r+0.05 

Jr+0.01 

JM 
(p-r)3 

dp 9o + 9i + 9s fiaP + g3 &a >n (P-r) 

- 9, 6‘ 
(P-r) 

r+0.05 

r+0.01 

= 413,333.33. 90 + 120,000 g1 + 40,000 g2 

+ (10,000 In 5) g3 + 8,000 g4 (E-8) 

Finally, 

r r+0.05 

r+0.01 i 
r-0.01 

r-0.05 

f(p) 

(p-r ) 
dp 

= 2283.2895 (fa-f-i) + 2397.1028 (f3-f.3) 

- 169.02 (f3-f_3) + 350.9914 (f4-f_4) + 5.1197 (fB-f.B) 
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where 

f 
P 

(O.Olp)3 Çi (zp} 

(r + 0.0 Ip)3/' 

and z as before . 
P 
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APPENDIX F 

CHORDWISE PRESSURE DISTRIBUTION 

This Appendix is concerned with the probiem of the chordwise pressure 

distribution on the propeiler blades. It is divided into the following 

parts : 
00 

(l) Cesâro summability of sin k0 
k=l 

(2) Equivalence of the Cesàro summability method and that of 
subtracting a constant from the coefficients of the sine series 

(3) Rationalization for the assumption = an + c 

All are considered fundamental to the evaluation of the chordwise pressure 

distribution. 
03 

(l) Cesàro sum of Yj sin kö 
k= 1 

Let C be the n^ partial Cesâro sum of 7] sin k0 . 
n 

Then 

n-k+l s in k0 

k= I 

'vE si"ke-Æ k sin k0 

k=l k=l 

Xütiî. 
n 

s In (n+l) 0 s in n6 

sin § 

sin (n-4-l) 0 
/. . s 0 4 sin 2 

n+l cos (-¾^ ) 0 

2 sin ^ [Cont'd] 

F-l 


